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Abstract
Due to its significant application in information security, cryptography is a mathematical field that is rapidly growing. To

safeguard any transactions over an insecure medium, a secure protocol is essential. Secure file transfer protocols must protect
the information via group signature in order to maintain data confidentiality and privacy during transmission. Under the group
signature scheme, a member of the group signs a message on behalf of the group. Signatures can be checked with regard
to a specific public key group, but does not disclose the identity of the signatory. However, it is challenging to preserve the
privacy between two parties and maintain the reliability of the message broadcast. In our study, we construct an efficient group
signature where the underlying work is based on generic linear group over group rings. The security evaluations show that our
protocol improves performance efficiency.
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1. Introduction

David Chaum and Eugene van Heyst first introduced the idea of a group signature method in 1991 [34].
Group signatures enable each member to sign on the group’s behalf. Even if they are unable to connect the
signature to a specific signer, a verifier can determine that the signer is a member of a group. However,
the user anonymity may be revoked by a trusted person (TP). When a group signature enables a TP to
recognise the signature of a malicious user, the traceability feature is met. On the other side, if a trusted
party colludes, all network users become susceptible to an adversary or malicious parties. The need to
protect a user’s anonymity causes a contradiction between accountability and privacy in this circumstance.
Message reliability, privacy, and accountability are the security requirements conflict with group signatures
even though they satisfy all security standards. In order to achieve higher performance efficiency in group
signatures where the underlying work is based on group ring, we propose a well-balanced security and pri-
vacy requirement in light of the shortcomings conflicting security requirements. The Diffie-Hellman (DH)
allow the exchange of a secret key via an insecure channel between two parties who have never met, the
DH key agreement protocol, which was first conceptualised in 1976, offers a workable solution to the key
distribution problem. It uses the cyclic group F∗q = Fq/0, where Fq is the finite field with q elements.
The complexity of the discrete logarithms problem (DLP) in the group F∗q provides the foundation for the
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security of this protocol. Numerous key exchange methods built on number theoretic issues, like the dis-
crete logarithm problem (DLP) and the integer factorization problem (IFP), have since been presented.
In these protocols, abelian groups are frequently the fundamental group structures [1]. This is due to the
intractability of issues involving number theory serving as the basis for all of these hard problems [2], [3],
[4], [5]. Nevertheless, Shor’s and other quantum algorithms [6], [7], [8], [9], [10] can resolve the IFP and
DLP over these abelian groups in polynomial time. In addition, these techniques based on number theory
are not applicable in microelectronic devices, such as low-cost smart cards with limited processing capabil-
ities. This motivates us to construct a safer and more effective number-theory-based key exchange protocols.

The non-commutative groups and rings have been used to propose a number of public key cryptosystems
and key exchange protocols [11], [12], [13]. According to [14], [15], [16] certain matrices properties, such as
determinant, eigenvalues, and Cayley–Hamilton theorem, can be used to develop attacks against protocols
that use groups of invertible matrices over finite fields as their platform group. These approaches reduce
the DLP on GLn(Fq) to a factoring issue or the DLP over finite fields [16]. The semigroup of matrices
over group ring: M(k×k)(Fq[Sr]) under typical matrix multiplication operation [17] and group of invertible
matrices over group ring: GLn(Fq[Sr] [14] have been proposed as the platform to prevent this reduction of
DLP to the one over finite field.

Group ring applications in cryptography have received a significant amount of attention over the years.
Rososhek et al. [18] [19] presented a cryptosystem based on group ring structure. A key exchange system
based on matrices over a group ring was created in 2011 by Kahrobaei et al. [18]. Following that, a number
of group ring-based systems were presented [19],[20], [21]. In [19], the author presented a number of key
exchange protocols and public key encryption techniques based on group ring matrices, with the related
intractable assumptions being DLP and factorization problem (FP) in group ring matrices, respectively. In
2016, S. Inam and R. Ali [20] developed a new El Gamal public key cryptosystem for which the underlying
hard problem for their cryptosystem is the conjugacy search problem. In their study, they have substituted
the conjugacy search problem (CSP) over group ring for the exponentiation of elements. The primary con-
cept behind the use of group rings in cryptography is predicated on the assumptions that the cardinality
of the finite ring R is fixed and that the cardinality of a group ring for a finite group is an exponent of the
cardinality of a group G. Then, a reliable user can employ polynomial algorithms to conduct cryptographic
transformations independently in the group G and in the ring R. In addition, the group ring will be ex-
tremely complicated for an unauthorised user.

Zhang et al. [22] introduced a key exchange protocol based on infinite non-abelian groups in 2022. They
created a shared secret key that contained two difficult problems: the equivalent decomposition problem
(EDP) and the discrete logarithm problem (DLP). Using semidirect products of finite groups, Lanel et
al. [23] suggested a unique method for non-abelian group-based public-key cryptography protocols. The
fundamental mathematical problem for the proposed protocols is given as an intractable problem of finding
automorphisms and producing elements of a group. Then, they demonstrated how this insoluble task might
be reduced to the challenging challenge of identifying the pathways and cycles of Cayley graphs, including
Hamiltonian paths and cycles. In [24], [25], Gupta et al. developed a novel undeniable signature technique
in a nonabelian group over group ring, whose security depends on the complexity of solving DLP and CSP.
However, this approach needs regular connection with the signer in order to validate the message and creden-
tials, and the signers may not always be available. Therefore, scheme in [24], [25] is impractical for business
and confidential transactions. They claimed that while an undeniable signature is effective, a signer who
has access to a private key may publish a publicly available message signature, which may compromise the
confidentiality of the signer’s identity. As a result, this scheme is unable to attain privacy-related properties.
In [26], a new El Gamal public key cryptosystem based on matrices over a grouping was proposed. Although
the platform of the group ring proposed is non commutative, the scheme may be inefficient because there is
no explicit performance efficiency stated in [26]. In [27], Mittal et al. developed a robust ID-based encryp-
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tion system whose security relies on the recently discovered significant problems in the algebraic structure
of group rings. However, because the TP possesses the user’s private keys, identity-based suffers from a key
escrow problem. In [28], a new form of the group ring-based signature system was developed.

In considering the fact that group rings are often not commutative, M(n,GR) and GL(n,GR) do not
make sense in general, therefore we must be very careful when choosing the ground structures of groups and
rings [29], [31], [32]. In [33]. The platform that we are suggesting in our work is the matrices over the group
ring (Fq[Sr]), where Fq is the finite field with q elements and Sr is the symmetric group of degree r.

Our contribution: In our work, we incorporate the two hard problems which are the CSP and DLP. We
modify and extent the existing CSP and DLP to define a new problem, conjugacy search problem with DLP
(CDL) where the underlying structure is based on group rings. We will also analyse the parameters that are
suitable to design a secure and efficient CDL based on a group ring. We implement the new problem CDL
to construct a secure and efficient group signature scheme. We provide an analysis that shows our protocol
achieves efficient security level, system robustness and performance efficiency.

2. Pleliminaries

Here, we present some fundamental notions of general linear group, group ring and matrices over group
ring.

Definition 1 (General Linear group) The general linear group is composed of n×n invertible matrices of
degree n. The operation is identical to standard matrix multiplication. Since the product of two invertible
matrices is also invertible and the inverse of an invertible matrix is equally invertible, this produces a group.
For instance, given a ring R with identity, the general linear group GLn(R) is the group of n×n invertible
matrices with elements in R.

Definition 2 (Group Ring) Let F be a field and G be a multiplicative group, finite or infinite. The group
ring [18] is an associative F-algebra consisting of all finite sums of the form:

x =
∑
g∈G

αgG

Where αg ∈ F and we denote group ring as F[G].

Let
y =

∑
g∈G

βgG

and
z =

∑
h∈G

γhh

be elements of F[G]. Then, the addition and multiplication are defined as follows:

x+ y =
∑
g∈G

αgG+
∑
g∈G

βgG =
∑
g∈G

αgG+βgG

xz =
∑
g∈G

αgG×
∑
h∈G

γhh =
∑

g,h∈G

αgGγhh
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Definition 3 (Matrices over group ring (Fq[Sr])). Consider the field F5 and the symmetric group S5. Let
e be the multiplicative identical element of F5[S5] and a,b ∈ F5[S5] such that:

a = 3(134) + 2(13)(25),
b = 4(134) + 2(1325) + (14)(35).

Then from the above definition,

a2 = (14)(25) + 4(143) + (25)(34) + 4(1),
a+ b = 2(134) + 2(13)(25) + 2(1325) + (14)(35),

ab = (4(134) + 2(1325) + (14)(35))(3(134) + 2(13)(25)) =
2(143) + 3(14)(25) + (125)(34) + 4(12) + 3(153) + 2(15234).

Hence, M(2×2)(F5[S5])is the semigroup of 2 × 2 matrices over the group ring F5[S5] under conventional
matrix multiplication. LetA1,A2 ∈M(2× 2)(F5[S5]) where:

A1 =

[
0 b

e a

]
,

A2 =

[
b e

e a

]
Then,

A1A2 =

[
b ba

b+ a e+ a2

]
Where ba,b+ a and a2 are calculated above.

2.1. Conjugacy Search Problem with Discrete Logarithm Problem (CDL)
This section presents a new hard problem known as the conjugacy search problem with discrete loga-

rithm problem and examines its complexity and security.

Definition 1 (Conjugacy Search Problem) In a non-abelian group (G, )̇, the conjugacy search problem is
formulated as follows: given x,y ∈ G such that x = a− 1·y·a, obtain a ∈ G.

Definition 2 (Discrete Logarithm Problem). Let p be a prime and given an element β ∈ F∗p where F∗pis
a cyclic group of order p− 1 generated by a, find an integer t, 0 ⩽ t ⩽ p− 2 such that at ≡ β mod p.

We combine the aforementioned two problems to formulate the new problem of conjugacy search prob-
lem with discrete logarithm problem (CDL), whose underlying structure is based on general linear group
over group ring.

Definition 3 (Conjugacy Search Problem with Discrete Logarithm Problem). Let (H, )̇ be a finite non-
abelian semigroup with v elements. Let x,y, z be arbitrary elements of H and a be a random element of F∗p.
Then for given y, z ∈ H, find x ∈ H and a ∈ F∗p such that y = xzax(−1).
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2.2. Security and complexity of CDL
Let H = y1,y2, ...,yn be a non-commutative semigroup of n elements and Zm = 0, 1, 2, 3, ...,m− 1,

where m is large positive integer. Let z ∈ G and w ∈ Zm\0, 1 such that for given x,y ∈ G, x = ywz. Since
x,y, z ∈ G, they can be expressed as x = yi,y = yj, z = yk for some i, j,k ∈ 1, 2, 3, ...,n.

The elements z and w are chosen from G and Zm\0, 1. There are n and m options for z and w, corre-
spondingly. The total number of steps required to solve the CDL using a brute force approach is therefore
O(nm), which is exponential in the size of nm in bits and d = loge2 where:

e(log
n
em) (2.1)

e(loge2.log2nm) (2.2)

e(d.size(nm)) (2.3)

Example 1. For a certain non-abelian group, we evaluate the CDL’s complexity. In the case when Fq is
a field and Sr is a symmetric group, let H = GLn(Fq[Sr]) be a non-abelian group of n×n matrices of order
v over group ring Fq[Sr]. Assume X, Y,Z be three n× n matrices of H, with X being a non-degenerated
matrix and a ∈ F∗p such that Y = XZaX(−1). Therefore, the number of operations needed to discover (X,a)
is O(vp) which is equivalent to O(exp(logevp)).

Example 2. Let F5 be a field and S3 is a group on symmetric on 3 symbols. Then an arbitary element x
of the group ring F5[S3] can be expressed as:

x =

3∑
1

!uiti

Where ui ∈ F5 and ti ∈ S3, that is all possible linear combinations of S3. We note that the total number
of elements in group ring F5[S3] is 53!. Hence the semigroup G = GL(2×2)(F5[S3]) of 2 × 2 matrices have
(53!)4 ≊ 524 elements in it. Therefore, we can conclude the complexity over GL(2×2)(F5[S3]) is significantly
large and robust against brute force attack as depicted in Table 1.

Table 1: The size of GL(k× k)(Fq[Sr]) for different values of k,q and r

Matrix Size (k× k) q = 3r = 5 q = 3r = 7 q = 5r = 5 q = 5r = 7

2× 2 (35!)4 = 3480 (37!)4 = 320160 (55!)4 = 5480 (57!)4 = 520160

3× 3 (35!)9 = 31080 (37!)9 = 345360 (55!)9 = 51080 (57!)9 = 545360

3. A Secure Group Signature Scheme Over Group Ring

In this section, we present our secure and efficient group signature scheme based on group ring where
the security relies upon the complexity of CDL.
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System setup: Consider the case where H = GL(k×k)(Fq[Sr]) is a commutative subsemigroup of G
and N be an abelian subgroup of H. Let h be a cryptographic hash function from {0, 1}∗ to H defined as
h : (0, 1)∗ → H/N. The system parameter is µ = ⟨p,H1,N,h,A,X,a⟩.

Key Generation: Consider, A ∈ H/N, then the public key is (pk = P) where P = PXAaX(−1) for X ∈ N.
Then, the private key (sk = X,a) for a ∈ Z∗

p/(1).

Signature Phase: A signature on a messagem ∈ (0, 1)∗ is S = Y(h(m))aY(−1) = XAa(h(m))aA(−a)X(−1),
where h(m) ∈ H/N and Y = XAa. Generate a random pk for a group member and produce a message
link-identifier σ = H1(m)(sk).

Verification Phase: A verifier carries out the following steps to verify validity of the signature S:

Step 1. On receiving the signature S on the message m, the verifier picks a random matrix R ∈ N, a
random integer b ∈ Z∗

p\1 and then computes C = (RP( − 1)SPR( − 1))b and sends C to the signer.
Step 2. The signer computes Q = (X(−1)CX)(a

(−1)) and sends Q to the verifier.
Step 3. The verifier now calculates Q1 = R((h(m))bR(−1) and checks whether Q = Q1 or not.
Step 4. The signature is valid if and only if Q = Q1.
Step 5. The verifier verifies messages that included the same σ as replay of σ demonstrates that the same
messages were signed by the same signer more than once.

Revocation Phase: On receiving the S on the message m, the verifier calculates C = (RP(−1)SPR(−1))b

and sends it to the signer, then the signer calculates Q = (X(−1)CX)(a
(−1)) using private key (X,a) and

sends it to the verifier. The verifier then checks whether Q = Q1 or not. The equality Q = Q1 can be
verified as follows:

Q = (X−1CX)(a
−1) = X−1C(a−1)X

= X−1(RP−1SPR−1)b
(
a−1)X

= X−1(R(XA−aX−1)(XAah(m)aA−aX−1)(XAaX−1)R−1)b
(
a−1)X

= X−1(RX(h(m)aX−1)R−1)b
(
a−1)X

= X−1(RX(h(m)aba
−1)X−1)R−1X

= X−1(XRh(m)(aa
−1b)R−1X−1)X

= R(h(m))bR−1

= Q1.

Thus, on receiving Q, the verifier verifies the equality Q = Q1 and if the equality holds the verifier
accepts the signature.

4. Security and Performance Evaluation

In this section, we evaluate and discuss security issues and performance level of our proposed protocol.
We compare our scheme with [24], [25] and [27] as both schemes proposed a secure cryptosystem where the
underlying work is based over group ring. The following security requirements are critical concerns to be
met towards a secure cryptosystem.

1) Reliability. The first two conditions of message reliability of are fulfilled in all aforementioned schemes.
A secure digital signature technique is commonly used to achieve message authentication. Messages an-
nounced without modification is assured and the authenticity of the message is preserved.
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Claim 1. The proposed protocol is robust against Sybil attack and achieves the third requirement of
message reliability.

We consider a Sybil attack executed by an internal adversary. An external adversary is not considered,
as they do not own a valid credential or direct access to the network thus pose less harms to other users in
the network. Sybil attack occurs when an internal adversary generates multiple signatures and disguise as
different signer in order to compromise the functionality of the cryptosystem.

Proof: Let an internal adversary be ψ. We consider a scenario where ψ generates two signatures on
the same message and announce these messages. Upon receiving these messages, the verifier checks the
message-link identifier, σ to ensure that a legitimate signer in the network generates each message once.
However, ψ can be identified when the two signatures share the same component of σ = H1(m)(sk).

Hence, ψ can be computationally related by evaluating the component of σ on two messages reporting
the same event. This enable ψ to be traceable when the replay of σ is recognized upon endorsing the same
message more than once. Hence, the message will be discarded and thus, our protocol is robust against
Sybil attack.

2) Privacy. We consider two elements of privacy, which are anonymity and unlinkability. with [24], [25]
and [27] the requirement of privacy is achieved by the use of pseudonyms where it avoids linking the real
identification of the signer to its source. Furthermore, different messages announced from an origin cannot
be linked to each other. In our work, we satisfy the property of privacy.

Claim 2. Our protocol protects the privacy of the originators against an internal adversary.

Proof: Let an internal adversary be B. Consider the following anonymity game. We generate key pair
as depicted in our work and obtaining n key pairs (pk)(v1), (sk)(v1), …, (pk)(vn), (sk)(vn). The system pa-
rameters µ is forwarded to adversary B upon request where:

µ = ⟨p,H1,N,h,A,X,a⟩. (4.1)

We assume that the adversary B query the signer’s secret key at index i, 1 ⩽ i ⩽ n. We respond with
key pair (pk)(vi), (sk)(vi). We produce a valid signature σi on m using (sk)(vi) and forward σi to B. The
adversary B then generates a message m∗. We randomly choose a bit b ∈R 0, 1where b is unknown to us.
We then compute a signature σ∗ on m∗ using (sk)(vi)b . We send σ∗ to B. When B obtains the signature,
B analyses the signature and outputs the guess of b’ of bvwhere b’ ∈R 0, 1. We declare failure and B
wins the game, provided that B can guess the value of b’ = b. This anonymity game defines the advan-
tage of adversary B winning the game as equation (4.2), where Pr[b’ = b] represents the probability of b’ = b.

Pr[b’ = b] = 1/2 (4.2)

The probability is taken over the coin tosses of adversary B. Consequently, the adversary B is unable
to exploit the randomized key generation and signing algorithm to win the anonymity game in polynomial
time with a non-negligible probability. Hence, our scheme satisfies the privacy requirement.

3) Accountability. An entity performing some unlawful actions is accountable by the authorised party.
In our work we satisfy the accountability features.

Claim 3. Our protocol achieves all the accountability requirements.
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Proof: We fulfil the accountability requirements of traceability, non-repudiation and revocation in our
scheme. The property of traceability is satisfied where the group signature allows the verifier to reveal
signature of a malicious vehicle. The identity of an adversary is traceable when the same component of σ
is recognized upon verifying the same message more than once and the proof runs similar to the proof in
Claim 1.

Table 2: Security Requirements in group ring
Security element [24], [25] [27] Our work

Sender’s authenticity Yes Yes Yes
Data integrity Yes Yes Yes

Message truthfulness No No Yes
Anonymity Yes Yes Yes

Unlinkability Yes Yes Yes
Traceability Yes Yes Yes

Non-repudiation Yes No Yes
Revocation No No Yes

5. Conclusion

In this study, we have introduced a new key exchange protocol where the underlying work is based upon
a new conjugacy search problem with discrete logarithm problem with factorization (CDL) over group ring.
As far as we are aware of, this is the first proposed protocol employing group ring exists in the literature. We
employed the semigroup of matrices over the group ring with the standard matrix multiplication operation
as the platform group for a new group signature scheme based on CDL. Robustness analysis of our work
demonstrates the feasibility and applicability of our protocol in actual implementation.
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